{ "id": "1405.7304", "version": "v1", "published": "2014-05-28T17:03:30.000Z", "updated": "2014-05-28T17:03:30.000Z", "title": "On Conformal Powers of the Dirac Operator on Einstein Manifolds", "authors": [ "Matthias Fischmann", "Christian Krattenthaler", "Petr Somberg" ], "comment": "Conformal and semi-Riemannian {\\it Spin}-geometry, conformal powers of the Dirac operator, Einstein manifolds, higher variations of the Dirac operator, Hahn polynomials", "categories": [ "math.DG", "math-ph", "math.AP", "math.CO", "math.MP" ], "abstract": "We determine the structure of conformal powers of the Dirac operator on Einstein {\\it Spin}-manifolds in terms of the product formula for shifted Dirac operators. The result is based on the techniques of higher variations for the Dirac operator on Einstein manifolds and spectral analysis of the Dirac operator on the associated Poincar\\'e-Einstein metric, and relies on combinatorial recurrence identities related to the dual Hahn polynomials.", "revisions": [ { "version": "v1", "updated": "2014-05-28T17:03:30.000Z" } ], "analyses": { "subjects": [ "53C27", "34L40", "53A30", "33C20" ], "keywords": [ "conformal powers", "einstein manifolds", "dual hahn polynomials", "spectral analysis", "associated poincare-einstein metric" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.7304F" } } }