{ "id": "1405.7008", "version": "v1", "published": "2014-05-27T18:56:12.000Z", "updated": "2014-05-27T18:56:12.000Z", "title": "Exponential Mixing for Skew Products with Discontinuities", "authors": [ "Oliver Butterley", "Peyman Eslami" ], "categories": [ "math.DS" ], "abstract": "We consider the skew product $F: (x,u) \\mapsto (f(x), u + \\tau(x))$, where the base map $f : \\mathbb{T}^{1} \\to \\mathbb{T}^{1}$ is piecewise $\\mathcal{C}^{2}$, covering and uniformly expanding, and the fibre map $\\tau : \\mathbb{T}^{1} \\to \\mathbb{R}$ is piecewise $\\mathcal{C}^{2}$. We show the dichotomy that either this system mixes exponentially or $\\tau$ is cohomologous (via a Lipschitz function) to a piecewise constant.", "revisions": [ { "version": "v1", "updated": "2014-05-27T18:56:12.000Z" } ], "analyses": { "subjects": [ "37A25", "37C30", "37D50" ], "keywords": [ "skew product", "exponential mixing", "discontinuities", "lipschitz function", "fibre map" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.7008B" } } }