{ "id": "1405.6981", "version": "v1", "published": "2014-05-27T17:24:32.000Z", "updated": "2014-05-27T17:24:32.000Z", "title": "Stretched-exponential mixing for $\\mathscr{C}^{1+α}$ skew products with discontinuities", "authors": [ "Peyman Eslami" ], "comment": "21 pages", "categories": [ "math.DS" ], "abstract": "Consider the skew product $F:\\mathbb{T}^2 \\to \\mathbb{T}^2$, $F(x,y)= (f(x),y+\\tau(x))$, where $f:\\mathbb{T}^1\\to \\mathbb{T}^1$ is a piecewise $\\mathscr{C}^{1+\\alpha}$ expanding map on a countable partition and $\\tau:\\mathbb{T}^1 \\to \\mathbb{R}$ is piecewise $\\mathscr{C}^1$. It is shown that if $\\tau$ is not Lipschitz-cohomologous to a piecewise constant function on the joint partition of $\\tau$ and $f$, then $F$ is mixing at a stretched-exponential rate.", "revisions": [ { "version": "v1", "updated": "2014-05-27T17:24:32.000Z" } ], "analyses": { "subjects": [ "37A25" ], "keywords": [ "skew product", "stretched-exponential mixing", "discontinuities", "piecewise constant function", "joint partition" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.6981E" } } }