{ "id": "1405.6888", "version": "v2", "published": "2014-05-27T12:46:48.000Z", "updated": "2014-06-02T13:09:53.000Z", "title": "Cayley-Dickson Algebras and Finite Geometry", "authors": [ "Metod Saniga", "Frederic Holweck", "Petr Pracna" ], "comment": "26 pages, 20 figures; V2 - the basis made explicit, a footnote and a couple of references added", "categories": [ "math.CO", "math-ph", "math.MP", "math.RA" ], "abstract": "Given a $2^N$-dimensional Cayley-Dickson algebra, where $3 \\leq N \\leq 6$, we first observe that the multiplication table of its imaginary units $e_a$, $1 \\leq a \\leq 2^N -1$, is encoded in the properties of the projective space PG$(N-1,2)$ if one regards these imaginary units as points and distinguished triads of them $\\{e_a, e_b, e_c\\}$, $1 \\leq a < b