{ "id": "1405.6802", "version": "v1", "published": "2014-05-27T06:15:16.000Z", "updated": "2014-05-27T06:15:16.000Z", "title": "On the growth rate of 1324-avoiding permutations", "authors": [ "Andrew R Conway", "Anthony J Guttmann" ], "comment": "20 pages, 10 figures", "categories": [ "math.CO", "cs.DS", "math-ph", "math.MP" ], "abstract": "We give an improved algorithm for counting the number of $1324$-avoiding permutations, resulting in 5 further terms of the generating function. We analyse the known coefficients and find compelling evidence that unlike other classical length-4 pattern-avoiding permutations, the generating function in this case does not have an algebraic singularity. Rather, the number of 1324-avoiding permutations of length $n$ behaves as $$B\\cdot \\mu^n \\cdot \\mu_1^{n^{\\sigma}} \\cdot n^g.$$ We estimate $\\mu=11.60 \\pm 0.01,$ $\\sigma=1/2,$ $\\mu_1 = 0.0398 \\pm 0.0010,$ $g = -1.1 \\pm 0.2$ and $B =9.5 \\pm 1.0.$", "revisions": [ { "version": "v1", "updated": "2014-05-27T06:15:16.000Z" } ], "analyses": { "subjects": [ "05A05", "05A15", "05A16" ], "keywords": [ "growth rate", "generating function", "algebraic singularity", "compelling evidence", "pattern-avoiding permutations" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.6802C" } } }