{ "id": "1405.6513", "version": "v2", "published": "2014-05-26T09:27:21.000Z", "updated": "2015-06-28T15:21:51.000Z", "title": "Eisenstein Cohomology for GL(N) and ratios of critical values of Rankin-Selberg L-functions", "authors": [ "Günter Harder", "A. Raghuram" ], "comment": "82 pages, including Appendix 1 by Uwe Weselmann and Appendix 2 by Chandrasheel Bhagwat and A. Raghuram. Many local edits and improvements in the 2nd version", "categories": [ "math.NT", "math.RT" ], "abstract": "The aim of this article is to study rank-one Eisenstein cohomology for the group GL(N)/F, where F is a totally real field extension of Q. This is then used to prove rationality results for ratios of successive critical values for Rankin-Selberg L-functions for GL(n) x GL(n') over F with the parity condition that nn' is even. The key idea is to interpret Langlands's constant term theorem in terms of Eisenstein cohomology.", "revisions": [ { "version": "v1", "updated": "2014-05-26T09:27:21.000Z", "title": "Eisenstein Cohomology for GL(N) and ratios of critical values of Rankin-Selberg L-functions - I", "comment": "84 pages, including Appendix 1 by Uwe Weselmann and Appendix 2 by Chandrasheel Bhagwat and A. Raghuram", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-06-28T15:21:51.000Z" } ], "analyses": { "subjects": [ "11F75", "11F66", "11F67", "11F70", "22E55" ], "keywords": [ "rankin-selberg l-functions", "critical values", "interpret langlandss constant term theorem", "study rank-one eisenstein cohomology", "totally real field extension" ], "note": { "typesetting": "TeX", "pages": 82, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.6513H" } } }