{ "id": "1405.6462", "version": "v1", "published": "2014-05-26T05:16:25.000Z", "updated": "2014-05-26T05:16:25.000Z", "title": "Cayley Graph on Symmetric Group Generated by Elements Fixing $k$ Points", "authors": [ "Kok Bin Wong", "Terry Lau", "Cheng Yeaw Ku" ], "comment": "22 pages", "categories": [ "math.CO" ], "abstract": "Let $\\mathcal{S}_{n}$ be the symmetric group on $[n]=\\{1, \\ldots, n\\}$. The $k$-point fixing graph $\\mathcal{F}(n,k)$ is defined to be the graph with vertex set $\\mathcal{S}_{n}$ and two vertices $g$, $h$ of $\\mathcal{F}(n,k)$ are joined if and only if $gh^{-1}$ fixes exactly $k$ points. In this paper, we derive a recurrence formula for the eigenvalues of $\\mathcal{F}(n,k)$. Then we apply our result to determine the sign of the eigenvalues of $\\mathcal{F}(n,1)$.", "revisions": [ { "version": "v1", "updated": "2014-05-26T05:16:25.000Z" } ], "analyses": { "keywords": [ "symmetric group", "cayley graph", "elements fixing", "point fixing graph", "vertex set" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.6462W" } } }