{ "id": "1405.6428", "version": "v2", "published": "2014-05-25T20:35:37.000Z", "updated": "2014-06-16T20:15:25.000Z", "title": "The Bishop-Phelps-Bollobás property for operators on $C(K)$", "authors": [ "Maria D. Acosta" ], "comment": "13 pages", "categories": [ "math.FA" ], "abstract": "We provide a version for operators of the Bishop-Phelps-Bollob\\'{a}s Theorem when the domain space is the complex space $C_0(L)$. In fact we prove that the pair $(C_0(L), Y)$ satisfies the Bishop-Phelps-Bollob\\'{a}s property for operators for every Hausdorff locally compact space $L$ and any $\\mathbb{C}$-uniformly convex space. As a consequence, this holds for $Y= L_p (\\mu)$ ($1 \\le p < \\infty $).", "revisions": [ { "version": "v2", "updated": "2014-06-16T20:15:25.000Z" } ], "analyses": { "subjects": [ "46B20", "46B28", "47B99" ], "keywords": [ "bishop-phelps-bollobás property", "hausdorff locally compact space", "complex space", "domain space", "uniformly convex space" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.6428A" } } }