{ "id": "1405.6385", "version": "v2", "published": "2014-05-25T12:43:30.000Z", "updated": "2014-12-08T14:56:22.000Z", "title": "Families Of Elliptic Curves With The Same Mod 8 Representations", "authors": [ "Zexiang Chen" ], "categories": [ "math.NT" ], "abstract": "Let $E:y^2=x^3+ax+b$ be an elliptic curve defined over $\\mathbb{Q}$. We compute certain twists of the classical modular curves $X(8)$. Searching for rational points on these twists enables us to find non-trivial pairs of $8$-congruent elliptic curves over $\\mathbb{Q}$, i.e. pairs of non-isogenous elliptic curves over $\\mathbb{Q}$ whose $8$-torsion subgroups are isomorphic as Galois modules. We also show that there are infinitely many examples over $\\mathbb{Q}$.", "revisions": [ { "version": "v1", "updated": "2014-05-25T12:43:30.000Z", "abstract": "Let $E:y^2=x^3+ax+b$ be an elliptic curve defined over $\\mathbb{Q}$. We compute certain twists of the classical modular curves $X(8)$ which parameterize families of elliptic curves which have the same mod 8 representation as $E$ together with some specified conditions on the Weil pairing.", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2014-12-08T14:56:22.000Z" } ], "analyses": { "subjects": [ "11F33", "11F80" ], "keywords": [ "representation", "classical modular curves", "parameterize families", "elliptic curve" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.6385C" } } }