{ "id": "1405.6270", "version": "v2", "published": "2014-05-24T05:37:48.000Z", "updated": "2014-12-08T08:38:49.000Z", "title": "A few remarks on values of Hurwitz Zeta function at natural and rational arguments", "authors": [ "Paweł J. Szabłowski" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "We exploit some properties of the Hurwitz zeta function $\\zeta (n,x)$ in order to study sums of the form $\\frac{1}{\\pi ^{n}}\\sum_{j=-\\infty}^{\\infty}1/(jk+l)^{n}$ and $\\frac{1}{\\pi ^{n}}\\sum_{j=-\\infty}^{\\infty}(-1)^{j}/(jk+l)^{n}$ for $% 2\\leq n,k\\in \\mathbb{N},$ and integer $l\\leq k/2$. We show that these sums are algebraic numbers. We also show that $11,$ and $% l\\leq k/2$. We show that for odd $k$ or $k\\allowbreak =\\allowbreak 2^{m}$ for some $m$ natural first sums while for even $k$ second sums are algebraic numbers. Hence we generalize known result for $k\\allowbreak =\\allowbreak 4$ and $l\\allowbreak =\\allowbreak 1$ dating back to L. Euler. Besides we recall and prove in believed to be new way known relationships between Hurwitz and Riemann Zeta functions.", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-12-08T08:38:49.000Z" } ], "analyses": { "subjects": [ "11M35", "11M06", "11M36", "11J72" ], "keywords": [ "natural first sums", "riemann zeta functions", "hurwitz zeta functions", "study sums", "exploit relationship" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.6270S" } } }