{ "id": "1405.5183", "version": "v1", "published": "2014-05-20T18:40:26.000Z", "updated": "2014-05-20T18:40:26.000Z", "title": "On the stability of the existence of fixed points for the projection-iterative methods with relaxation", "authors": [ "Andrzej Komisarski", "Adam Paszkiewicz" ], "categories": [ "math.FA" ], "abstract": "We consider an $\\alpha$-relaxed projection $P_A^\\alpha:H\\to H$ given by $P_A^\\alpha(x)=\\alpha P_A(x)+(1-\\alpha)x$ where $\\alpha\\in[0,1]$ and $P_A$ is the projection onto a non-empty, convex and closed subset $A$ of the real Hilbert space $H$. We characterise all the sets $F\\subset[0,1]$ such that for some non-empty, convex and closed subsets $A_1,A_2,\\dots,A_k\\subset H$ the composition $P_{A_k}^\\alpha P_{A_{k-1}}^\\alpha\\dots P_{A_1}^\\alpha$ has a fixed point iff $\\alpha\\in F$. It proves, that if $\\dim H\\geq 3$ and $k\\geq3$ then the class of the derscribed above sets $F$ of coefficients $\\alpha$ is exactly the class of $F_\\sigma$ subsets of $[0,1]$ containing $0$.", "revisions": [ { "version": "v1", "updated": "2014-05-20T18:40:26.000Z" } ], "analyses": { "subjects": [ "47H10", "47H09", "46C05", "52A15", "90C25" ], "keywords": [ "fixed point", "projection-iterative methods", "relaxation", "real hilbert space", "closed subset" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.5183K" } } }