{ "id": "1405.5161", "version": "v1", "published": "2014-05-20T17:35:27.000Z", "updated": "2014-05-20T17:35:27.000Z", "title": "Dynamic alpha-invariants of del Pezzo surfaces", "authors": [ "Ivan Cheltsov", "Jesus Martinez-Garcia" ], "comment": "21 pages", "categories": [ "math.AG", "math.DG" ], "abstract": "For every smooth del Pezzo surface $S$, smooth curve $C\\in|-K_{S}|$ and $\\beta\\in(0,1]$, we compute the $\\alpha$-invariant of Tian $\\alpha(S,(1-\\beta)C)$ and prove the existence of K\\\"ahler--Einstein metrics on $S$ with edge singularities along $C$ of angle $2\\pi\\beta$ for $\\beta$ in certain interval. In particular we give lower bounds for the invariant $R(S,C)$, introduced by Donaldson as the supremum of all $\\beta\\in(0,1]$ for which such a metric exists.", "revisions": [ { "version": "v1", "updated": "2014-05-20T17:35:27.000Z" } ], "analyses": { "subjects": [ "14J45", "32Q20", "14J26", "14E07", "32Q10" ], "keywords": [ "dynamic alpha-invariants", "smooth del pezzo surface", "smooth curve", "lower bounds", "edge singularities" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.5161C" } } }