{ "id": "1405.4788", "version": "v1", "published": "2014-05-14T17:00:22.000Z", "updated": "2014-05-14T17:00:22.000Z", "title": "A Study on the Nourishing Number of Graphs and Graph Powers", "authors": [ "N K Sudev", "K A Germina" ], "comment": "10 pages, submitted", "categories": [ "math.CO" ], "abstract": "An integer additive set-indexer is defined as an injective function $f:V(G)\\rightarrow 2^{\\mathbb{N}_0}$ such that the induced function $g_f:E(G) \\rightarrow 2^{\\mathbb{N}_0}$ defined by $g_f (uv) = f(u)+ f(v)$ is also injective, where $f(u)+f(v)$ is the sumset of $f(u)$ and $f(v)$. If $g_f(uv)=k~\\forall~uv\\in E(G)$, then $f$ is said to be a $k$-uniform integer additive set-indexer. An integer additive set-indexer $f$ is said to be a strong integer additive set-indexer if $|g_f(uv)|=|f(u)|.|f(v)|~\\forall ~ uv\\in E(G)$. In this paper, we study the characteristics of certain graph classes and graph powers that admit strong integer additive set-indexers.", "revisions": [ { "version": "v1", "updated": "2014-05-14T17:00:22.000Z" } ], "analyses": { "subjects": [ "05C78" ], "keywords": [ "graph powers", "nourishing number", "admit strong integer additive set-indexers", "uniform integer additive set-indexer", "graph classes" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.4788S" } } }