{ "id": "1405.4410", "version": "v1", "published": "2014-05-17T15:25:02.000Z", "updated": "2014-05-17T15:25:02.000Z", "title": "On properties of solutions of quasilinear second-order elliptic inequalities", "authors": [ "Andrej A. Kon'kov" ], "categories": [ "math.AP" ], "abstract": "Let $\\Omega$ be an unbounded open subset of ${\\mathbb R}^n$, $n \\ge 2$, and $A : \\Omega \\times {\\mathbb R}^n \\to {\\mathbb R}^n$ be a function such that $$ C_1 |\\zeta|^p \\le \\zeta A (x, \\zeta), \\quad |A (x, \\zeta)| \\le C_2 |\\zeta|^{p-1} $$ with some constants $C_1 > 0$, $C_2 > 0$, and $p > 1$ for almost all $x \\in \\Omega$ and for all $\\zeta \\in {\\mathbb R}^n$. We obtain blow-up conditions and priori estimates for inequalities of the form $$ {\\rm div} \\, A (x, D u) + b (x) |D u|^\\alpha \\ge q (x) g (u) \\quad \\mbox{in } \\Omega, $$ where $p - 1 \\le \\alpha \\le p$ is a real number and, moreover, $b \\in L_{\\infty, loc} (\\Omega)$, $q \\in L_{\\infty, loc} (\\Omega)$, and $g \\in C ([0, \\infty))$ are non-negative functions.", "revisions": [ { "version": "v1", "updated": "2014-05-17T15:25:02.000Z" } ], "analyses": { "subjects": [ "35J15", "35J60", "35J61", "35J62", "35J92" ], "keywords": [ "quasilinear second-order elliptic inequalities", "properties", "real number", "unbounded open subset", "priori estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.4410K" } } }