{ "id": "1405.4384", "version": "v1", "published": "2014-05-17T11:56:10.000Z", "updated": "2014-05-17T11:56:10.000Z", "title": "Sharp Bounds for Neuman Means in Terms of Geometric, Arithemtic and Quadratic Means", "authors": [ "Zhi-Jun Guo", "Yan Zhang", "Yu-Ming Chu", "Ying-Qing Song" ], "comment": "11 pages", "categories": [ "math.CA", "math.OC" ], "abstract": "In this paper, we find the greatest values $\\alpha_{1}$, $\\alpha_{2}$, $\\alpha_{3}$, $\\alpha_{4}$, $\\alpha_{5}$, $\\alpha_{6}$, $\\alpha_{7}$, $\\alpha_{8}$ and the least values $\\beta_{1}$, $\\beta_{2}$, $\\beta_{3}$, $\\beta_{4}$, $\\beta_{5}$, $\\beta_{6}$, $\\beta_{7}$, $\\beta_{8}$ such that the double inequalities $$A^{\\alpha_{1}}(a,b)G^{1-\\alpha_{1}}(a,b)0$ with $a\\neq b$, where $G$, $A$ and $Q$ are respectively the geometric, arithmetic and quadratic means, and $N_{GA}$, $N_{AG}$, $N_{AQ}$ and $N_{QA}$ are the Neuman means derived from the Schwab-Borchardt mean.", "revisions": [ { "version": "v1", "updated": "2014-05-17T11:56:10.000Z" } ], "analyses": { "subjects": [ "26E60", "G.1.2" ], "keywords": [ "quadratic means", "sharp bounds", "arithemtic", "greatest values", "schwab-borchardt mean" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.4384G" } } }