{ "id": "1405.4230", "version": "v1", "published": "2014-05-16T16:21:41.000Z", "updated": "2014-05-16T16:21:41.000Z", "title": "Self-Shrinkers With Second Fundamental Form of Constant Length", "authors": [ "Qiang Guang" ], "comment": "6 pages", "categories": [ "math.DG" ], "abstract": "In this note, we give a new and simple proof of a result in {\\cite{DX1}} which states that any smooth complete self-shrinker in $\\mathbb{R}^3$ with second fundamental form of constant length must be a generalized cylinder $\\mathbb{S}^k \\times \\mathbb{R}^{2-k}$ for some $k\\leq2$. Moreover, we prove a gap theorem for smooth self-shrinkers in all dimensions.", "revisions": [ { "version": "v1", "updated": "2014-05-16T16:21:41.000Z" } ], "analyses": { "keywords": [ "second fundamental form", "constant length", "smooth complete self-shrinker", "smooth self-shrinkers", "gap theorem" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.4230G" } } }