{ "id": "1405.4035", "version": "v2", "published": "2014-05-15T23:30:41.000Z", "updated": "2014-07-07T16:10:25.000Z", "title": "Universal central extensions of $\\mathfrak{sl}(m, n, A)$ of small rank over associative superalgebras", "authors": [ "Xabier García-Martínez", "Manuel Ladra" ], "comment": "16 pages", "categories": [ "math.RT" ], "abstract": "We complete the solution of the problem of finding the universal central extension of the matrix superalgebras $\\mathfrak{sl}(m, n, A)$ where $A$ is an associative superalgebra and computing $H_2\\big(\\mathfrak{sl}(m, n, A)\\big)$. The Steinberg Lie superalgebra $\\mathfrak{st}(m, n, A)$ has a very important role and we will also find out $H_2\\big(\\mathfrak{st}(m, n, A)\\big)$. In Chen and Sun (arXiv:1311.7079, 2013) it is solved the problem where $m+n \\geq 5$ and in Chen and Guay (Algebr. Represent. Theory, 2013) it is solved when $n=0$, so here we work out the three remaining cases $\\mathfrak{sl}(2, 1, A), \\mathfrak{sl}(3, 1, A)$ and $\\mathfrak{sl}(2, 2, A)$.", "revisions": [ { "version": "v2", "updated": "2014-07-07T16:10:25.000Z" } ], "analyses": { "subjects": [ "17B60", "17B55", "17B05" ], "keywords": [ "universal central extension", "associative superalgebra", "small rank", "steinberg lie superalgebra", "matrix superalgebras" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.4035G" } } }