{ "id": "1405.3996", "version": "v1", "published": "2014-05-15T20:09:59.000Z", "updated": "2014-05-15T20:09:59.000Z", "title": "Pontryagin Maximum Principle for Control Systems on Infinite Dimensional Manifolds", "authors": [ "Robert J. Kipka", "Yuri S. Ledyaev" ], "categories": [ "math.OC" ], "abstract": "We discuss a mathematical framework for analysis of optimal control problems on infinite-dimensional manifolds. Such problems arise in study of optimization for partial differential equations with some symmetry. It is shown that some nonsmooth analysis methods and Lagrangian charts techniques can be used for study of global variations of optimal trajectories of such control systems and derivation of maximum principle for them.", "revisions": [ { "version": "v1", "updated": "2014-05-15T20:09:59.000Z" } ], "analyses": { "subjects": [ "49K05", "49K15", "49K27" ], "keywords": [ "pontryagin maximum principle", "infinite dimensional manifolds", "control systems", "nonsmooth analysis methods", "partial differential equations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.3996K" } } }