{ "id": "1405.3890", "version": "v2", "published": "2014-05-15T15:55:17.000Z", "updated": "2014-06-13T19:16:26.000Z", "title": "Some homological properties of $GL(m|n)$ in arbitrary characteristic", "authors": [ "Alexandr N. Zubkov" ], "categories": [ "math.RT", "math.RA" ], "abstract": "We show that Penkov's approach to a superanalog of Borel-Bott-Weil theorem for $G=GL(m|n)$ over a field of zero characteristic can be extended for a perfect field of arbitrary odd characteristic. We also prove some partial version of Kempf's vanishing theorem and characteristic free formula for Euler characteristic $\\chi(B, \\lambda^{\\epsilon})$, where $B$ is a Borel subgroup of $G$.", "revisions": [ { "version": "v2", "updated": "2014-06-13T19:16:26.000Z" } ], "analyses": { "keywords": [ "arbitrary characteristic", "homological properties", "arbitrary odd characteristic", "characteristic free formula", "penkovs approach" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.3890Z" } } }