{ "id": "1405.3587", "version": "v3", "published": "2014-05-14T17:38:10.000Z", "updated": "2015-09-14T17:03:03.000Z", "title": "On the number of prime factors of values of the sum-of-proper-divisors function", "authors": [ "Lee Troupe" ], "comment": "12 pages", "journal": "J. Number Theory 150 (2015) pp. 120-135", "categories": [ "math.NT" ], "abstract": "Let $\\omega(n)$ (resp. $\\Omega(n)$) denote the number of prime divisors (resp. with multiplicity) of a natural number $n$. In 1917, Hardy and Ramanujan proved that the normal order of $\\omega(n)$ is $\\log\\log n$, and the same is true of $\\Omega(n)$; roughly speaking, a typical natural number $n$ has about $\\log\\log n$ prime factors. We prove a similar result for $\\omega(s(n))$, where $s(n)$ denotes the sum of the proper divisors of $n$: For any $\\epsilon > 0$ and all $n \\leq x$ not belonging to a set of size $o(x)$, \\[ |\\omega(s(n)) - \\log\\log s(n)| < \\epsilon \\log\\log s(n) \\] and the same is true for $\\Omega(s(n))$.", "revisions": [ { "version": "v2", "updated": "2014-05-18T13:13:35.000Z", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-09-14T17:03:03.000Z" } ], "analyses": { "subjects": [ "11N37", "11N56", "11N64" ], "keywords": [ "prime factors", "sum-of-proper-divisors function", "proper divisors", "normal order", "typical natural number" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.3587T" } } }