{ "id": "1405.3580", "version": "v2", "published": "2014-05-14T17:27:56.000Z", "updated": "2015-01-20T17:23:05.000Z", "title": "Fundamental Group of Moduli Spaces of Representations", "authors": [ "Indranil Biswas", "Sean Lawton" ], "comment": "9 pages, to appear in Geometriae Dedicata", "categories": [ "math.AG", "math.AT" ], "abstract": "Let S be a surface of genus g with n points removed, G a connected Lie group, and X(G) the moduli space of representations of the fundamental group of S into G. We compute the fundamental group of X(G) when n>0 and G is a real or complex reductive algebraic group, or a compact Lie group; and when n=0 and G=GL(m,C), SL(m,C), U(m), or SU(m).", "revisions": [ { "version": "v1", "updated": "2014-05-14T17:27:56.000Z", "abstract": "Let S be a surface of genus g with n points removed, G a connected Lie group, and X(G) the moduli space of representations of the fundamental group of S into G. We compute the fundamental group of X(G) when n>0 and G is a real or complex reductive algebraic group, or a compact Lie group; and when n=0 and G=GL(n,C), SL(n,C), U(n), or SU(n).", "comment": "8 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-01-20T17:23:05.000Z" } ], "analyses": { "subjects": [ "14D20", "14L30", "14F35" ], "keywords": [ "fundamental group", "moduli space", "representations", "complex reductive algebraic group", "compact lie group" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.3580B" } } }