{ "id": "1405.3403", "version": "v1", "published": "2014-05-14T08:20:09.000Z", "updated": "2014-05-14T08:20:09.000Z", "title": "Equisingularity of families of isolated determinantal singularities", "authors": [ "J. J. Nuño-Ballesteros", "B. Oréfice-Okamoto", "J. N. Tomazella" ], "categories": [ "math.AG" ], "abstract": "We study the topological triviality and the Whitney equisingularity of a family of isolated determinantal singularities. On one hand, we give a L\\^e-Ramanujam type theorem for this kind of singularities by using the vanishing Euler characteristic. On the other hand, we extend the results of Teissier and Gaffney about the Whitney equisingularity of hypersurfaces and complete intersections, respectively, in terms of the constancy of the polar multiplicities.", "revisions": [ { "version": "v1", "updated": "2014-05-14T08:20:09.000Z" } ], "analyses": { "subjects": [ "32S15", "58K60", "32S30" ], "keywords": [ "isolated determinantal singularities", "whitney equisingularity", "type theorem", "vanishing euler characteristic", "complete intersections" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.3403N" } } }