{ "id": "1405.3052", "version": "v1", "published": "2014-05-13T07:38:08.000Z", "updated": "2014-05-13T07:38:08.000Z", "title": "Counterexamples to $ C^{\\infty} $ well posedness for some hyperbolic operators with triple characteristics", "authors": [ "Enrico Bernardi", "Tatsuo Nishitani" ], "categories": [ "math.AP" ], "abstract": "In this paper we prove that for a class of non-effectively hyperbolic operators with smooth triple characteristics the Cauchy problem is well posed in the Gevrey 2 class, beyond the generic Gevrey class $ 3/2 $ (see e.g. \\cite{Bro}). Moreover we show that this value is optimal.", "revisions": [ { "version": "v1", "updated": "2014-05-13T07:38:08.000Z" } ], "analyses": { "keywords": [ "counterexamples", "smooth triple characteristics", "generic gevrey class", "cauchy problem", "non-effectively hyperbolic operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.3052B" } } }