{ "id": "1405.3001", "version": "v2", "published": "2014-05-12T23:50:32.000Z", "updated": "2016-09-08T02:09:29.000Z", "title": "A $q$-Queens Problem. V. The Bishops' Period", "authors": [ "Thomas Zaslavsky", "Seth Chaiken", "Christopher R. H. Hanusa" ], "comment": "15 pp.; 12 pp. without white space. v2: Updated citations, rearranged authors. 12 pp", "categories": [ "math.CO" ], "abstract": "Part I showed that the number of ways to place $q$ nonattacking queens or similar chess pieces on an $n\\times n$ square chessboard is a quasipolynomial function of $n$. We prove the previously empirically observed period of the bishops quasipolynomial, which is exactly 2 for three or more bishops. The proof depends on signed graphs and the Ehrhart theory of inside-out polytopes.", "revisions": [ { "version": "v1", "updated": "2014-05-12T23:50:32.000Z", "comment": "15 pp.; 12 pp. without white space", "journal": null, "doi": null, "authors": [ "Seth Chaiken", "Christopher R. H. Hanusa", "Thomas Zaslavsky" ] }, { "version": "v2", "updated": "2016-09-08T02:09:29.000Z" } ], "analyses": { "subjects": [ "05A15", "00A08", "05C22", "52C07", "52C35" ], "keywords": [ "queens problem", "similar chess pieces", "ehrhart theory", "proof depends", "bishops quasipolynomial" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.3001C" } } }