{ "id": "1405.2587", "version": "v2", "published": "2014-05-11T21:24:00.000Z", "updated": "2015-10-21T16:15:20.000Z", "title": "Potential estimates and quasilinear parabolic equations with measure data", "authors": [ "Quoc Hung Nguyen" ], "comment": "120 p", "categories": [ "math.AP", "math.CA" ], "abstract": "In this paper, we study the existence and regularity of the quasilinear parabolic equations: $$u_t-\\text{div}(A(x,t,\\nabla u))=B(u,\\nabla u)+\\mu$$ in $\\mathbb{R}^{N+1}$, $\\mathbb{R}^N\\times(0,\\infty)$ and a bounded domain $\\Omega\\times (0,T)\\subset\\mathbb{R}^{N+1}$. Here $N\\geq 2$, the nonlinearity $A$ fulfills standard growth conditions and $B$ term is a continuous function and $\\mu$ is a radon measure. Our first task is to establish the existence results with $B(u,\\nabla u)=\\pm|u|^{q-1}u$, for $q>1$. We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary estimates on gradient of solutions with $B\\equiv 0$, under minimal conditions on the boundary of domain and on nonlinearity $A$. Finally, due to these estimates, we solve the existence problems with $B(u,\\nabla u)=|\\nabla u|^q$ for $q>1$.", "revisions": [ { "version": "v1", "updated": "2014-05-11T21:24:00.000Z", "comment": "118 pages. arXiv admin note: text overlap with arXiv:1309.1064 by other authors", "journal": null, "doi": null, "authors": [ "Nguyen Quoc Hung" ] }, { "version": "v2", "updated": "2015-10-21T16:15:20.000Z" } ], "analyses": { "subjects": [ "35K55", "35K58", "35K59", "31E05", "35K67", "42B37" ], "keywords": [ "quasilinear parabolic equations", "measure data", "potential estimates", "fulfills standard growth conditions", "nonlinearity" ], "note": { "typesetting": "TeX", "pages": 118, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.2587N" } } }