{ "id": "1405.2431", "version": "v2", "published": "2014-05-10T13:26:05.000Z", "updated": "2015-11-13T20:40:17.000Z", "title": "Weyl calculus and dual pairs", "authors": [ "M. McKee", "A. Pasquale", "T. Przebinda" ], "categories": [ "math.RT" ], "abstract": "We consider a dual pair $(G,G')$, in the sense of Howe, with $G$ compact acting on $L^2(\\mathbb R^n)$ for an appropriate $n$ via the Weil Representation. Let $\\widetilde{G}$ be the preimage of $G$ in the metaplectic group. Given a genuine irreducible unitary representation $\\Pi$ of $\\widetilde{G}$ we compute the Weyl symbol of orthogonal projection onto $L^2(\\mathbb R^n)_\\Pi$, the $\\Pi$-isotypic component. We apply the result to obtain an explicit formula for the character of the corresponding irreducible unitary representation $\\Pi'$ of $\\widetilde{G'}$ and to compute of the wave front set of $\\Pi'$ by elementary means.", "revisions": [ { "version": "v1", "updated": "2014-05-10T13:26:05.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-11-13T20:40:17.000Z" } ], "analyses": { "subjects": [ "22E45", "22E46", "22E30" ], "keywords": [ "dual pair", "weyl calculus", "genuine irreducible unitary representation", "wave front set", "elementary means" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.2431M" } } }