{ "id": "1405.2331", "version": "v1", "published": "2014-05-09T19:55:29.000Z", "updated": "2014-05-09T19:55:29.000Z", "title": "Fixed points of local actions of nilpotent Lie groups on surfaces", "authors": [ "Morris W. Hirsch" ], "categories": [ "math.DS" ], "abstract": "Let $G$ be connected nilpotent Lie group acting locally on a real surface $M$. Let $\\varphi$ be the local flow on $M$ induced by a $1$-parameter subgroup. Assume $K$ is a compact set of fixed points of $\\varphi$ and $U$ is a neighborhood of $K$ containing no other fixed points. Theorem: If the Dold fixed-point index of $\\varphi_t|U$ is nonzero for sufficiently small $t>0$, then ${\\rm Fix} (G) \\cap K \\ne \\emptyset$.", "revisions": [ { "version": "v1", "updated": "2014-05-09T19:55:29.000Z" } ], "analyses": { "subjects": [ "54H15", "54H25" ], "keywords": [ "fixed points", "local actions", "lie group acting", "dold fixed-point index", "local flow" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.2331H" } } }