{ "id": "1405.2223", "version": "v1", "published": "2014-05-09T13:22:48.000Z", "updated": "2014-05-09T13:22:48.000Z", "title": "Relative entropy in multi-phase models of 1d elastodynamics: Convergence of a non-local to a local model", "authors": [ "Jan Giesselmann" ], "categories": [ "math.AP" ], "abstract": "In this paper we study a local and a non-local regularization of the system of nonlinear elastodynamics with a non-convex energy. We show that solutions of the non-local model converge to those of the local model in a certain regime. The arguments are based on the relative entropy framework and provide an example how local and non-local regularizations may compensate for non-convexity of the energy and enable the use of the relative entropy stability theory -- even if the energy is not quasi- or poly-convex.", "revisions": [ { "version": "v1", "updated": "2014-05-09T13:22:48.000Z" } ], "analyses": { "subjects": [ "35L65", "35Q74", "82B26", "74N20" ], "keywords": [ "multi-phase models", "1d elastodynamics", "non-local regularization", "convergence", "relative entropy stability theory" ], "publication": { "doi": "10.1016/j.jde.2015.01.047", "journal": "Journal of Differential Equations", "year": 2015, "month": "May", "volume": 258, "number": 10, "pages": 3589 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015JDE...258.3589G" } } }