{ "id": "1405.2141", "version": "v2", "published": "2014-05-09T05:01:16.000Z", "updated": "2014-09-18T11:18:33.000Z", "title": "Tangential limits for harmonic functions with respect to $φ(Δ)$ : stable and beyond", "authors": [ "Jaehoon Kang", "Panki Kim" ], "comment": "17pages", "categories": [ "math.PR" ], "abstract": "In this paper, we discuss tangential limits for regular harmonic functions with respect to $\\phi(\\Delta):=-\\phi(-\\Delta)$ in the $C^{1,1}$ open set $D$ in $\\mathbb{R}^d$, where $\\phi$ is the complete Bernstein function and $d \\ge 2$. When the exterior function $f$ is local $L^p$-H\\\"older continuous of order $\\beta$ on $D^c$ with $ p\\in(1,\\infty]$ and $\\beta>1/p$, for a large class of Bernstein function $\\phi$, we show that the regular harmonic function $u_f$ with respect to $\\phi(\\Delta)$, whose value is $f$ on $D^c$, converges a.e. through a certain parabola that depends on $\\phi$ and $\\phi'$. Our result includes the case $\\phi(\\lambda)=\\log(1+\\lambda^{\\alpha/2})$. Our proofs use both the probabilistic and analytic methods.", "revisions": [ { "version": "v1", "updated": "2014-05-09T05:01:16.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2014-09-18T11:18:33.000Z" } ], "analyses": { "subjects": [ "31B25", "60J75" ], "keywords": [ "tangential limits", "regular harmonic function", "complete bernstein function", "analytic methods", "large class" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.2141K" } } }