{ "id": "1405.1601", "version": "v1", "published": "2014-05-07T13:34:42.000Z", "updated": "2014-05-07T13:34:42.000Z", "title": "The matching energy of graphs with given edge connectivity", "authors": [ "Shengjin Ji", "Hongping Ma" ], "comment": "9 pages", "categories": [ "math.CO" ], "abstract": "Let G be a simple graph of order $n$ and $\\mu_1,\\mu_2,\\ldots,\\mu_n$ the roots of its matching polynomial. The matching energy of $G$ is defined as the sum $\\sum_{i=1}^n|\\mu_i|$. Let $K_{n-1,1}^k$ be the graph obtained from $K_1\\cup K_{n-1}$ by adding $k$ edges between $V(K_1)$ and $V(K_{n-1})$. In this paper, we show that $K_{n-1,1}^k$ has maximum matching energy among all connected graph with order $n$ and edge connectivity $k$.", "revisions": [ { "version": "v1", "updated": "2014-05-07T13:34:42.000Z" } ], "analyses": { "keywords": [ "edge connectivity", "simple graph", "maximum matching energy", "matching polynomial" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.1601J" } } }