{ "id": "1405.0860", "version": "v2", "published": "2014-05-05T11:21:26.000Z", "updated": "2014-09-08T09:50:41.000Z", "title": "On Borel equivalence relations related to self-adjoint operators", "authors": [ "Hiroshi Ando", "Yasumichi Matsuzawa" ], "comment": "10 pages, added more detail of the proof of Proposition 3.8 after the referee's suggestion", "categories": [ "math.LO", "math.FA", "math.SP" ], "abstract": "In a recent work, the authors studied various Borel equivalence relations defined on the Polish space ${\\rm{SA}}(H)$ of all (not necessarily bounded) self-adjoint operators on a separable infinite-dimensional Hilbert space $H$. In this paper we study the domain equivalence relation $E_{\\rm{dom}}^{{\\rm{SA}}(H)}$ given by $AE_{\\rm{dom}}^{{\\rm{SA}}(H)}B\\Leftrightarrow {\\rm{dom}}{A}={\\rm{dom}}{B}$ and determine its exact Borel complexity: $E_{\\rm{dom}}^{{\\rm{SA}}(H)}$ is an $F_{\\sigma}$ (but not $K_{\\sigma}$) equivalence relation which is continuously bireducible with the orbit equivalence relation $E_{\\ell^{\\infty}}^{\\mathbb{R}^{\\mathbb{N}}}$ of the standard Borel group $\\ell^{\\infty}=\\ell^{\\infty}(\\mathbb{N},\\mathbb{R})$ on $\\mathbb{R}^{\\mathbb{N}}$. This, by Rosendal's Theorem, shows that $E_{\\rm{dom}}^{{\\rm{SA}}(H)}$ is universal for $K_{\\sigma}$ equivalence relations. Moreover, we show that generic self-adjoint operators have purely singular continuous spectrum equal to $\\mathbb{R}$.", "revisions": [ { "version": "v1", "updated": "2014-05-05T11:21:26.000Z", "comment": "8 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-09-08T09:50:41.000Z" } ], "analyses": { "keywords": [ "borel equivalence relations", "purely singular continuous spectrum equal", "domain equivalence relation", "separable infinite-dimensional hilbert space", "generic self-adjoint operators" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.0860A" } } }