{ "id": "1405.0713", "version": "v2", "published": "2014-05-04T16:24:55.000Z", "updated": "2015-08-26T01:10:22.000Z", "title": "Further result on acyclic chromatic index of planar graphs", "authors": [ "Tao Wang", "Yaqiong Zhang" ], "comment": "23 pages, 20 figures, mainly revised Lemma 8 in Discrete Applied Mathematics, 2015. arXiv admin note: text overlap with arXiv:1302.2405", "doi": "10.1016/j.dam.2015.07.015", "categories": [ "math.CO", "cs.DM" ], "abstract": "An acyclic edge coloring of a graph $G$ is a proper edge coloring such that every cycle is colored with at least three colors. The acyclic chromatic index $\\chiup_{a}'(G)$ of a graph $G$ is the least number of colors in an acyclic edge coloring of $G$. It was conjectured that $\\chiup'_{a}(G)\\leq \\Delta(G) + 2$ for any simple graph $G$ with maximum degree $\\Delta(G)$. In this paper, we prove that every planar graph $G$ admits an acyclic edge coloring with $\\Delta(G) + 6$ colors.", "revisions": [ { "version": "v1", "updated": "2014-05-04T16:24:55.000Z", "comment": "23 pages. arXiv admin note: text overlap with arXiv:1302.2405", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-08-26T01:10:22.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "acyclic chromatic index", "planar graph", "acyclic edge coloring", "simple graph", "maximum degree" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.0713W" } } }