{ "id": "1405.0690", "version": "v1", "published": "2014-05-04T12:33:02.000Z", "updated": "2014-05-04T12:33:02.000Z", "title": "Some New Inequalities of Dirichlet Eigenvalues for Laplace Operator with any Order", "authors": [ "Na Huang", "Pengcheng Niu" ], "categories": [ "math.AP" ], "abstract": "In this paper, we establish several inequalities of Dirichlet eigenvalues for Laplace operator $\\Delta $ with any order on \\emph{n}-dimensional Euclidean space. These inequalities are more general than known Yang's inequalities and contain new consequences. To obtain them, we borrow the approach of Illias and Makhoul, and use a generalized Chebyshev's inequality.", "revisions": [ { "version": "v1", "updated": "2014-05-04T12:33:02.000Z" } ], "analyses": { "keywords": [ "laplace operator", "dirichlet eigenvalues", "yangs inequalities", "euclidean space", "generalized chebyshevs inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.0690H" } } }