{ "id": "1405.0621", "version": "v1", "published": "2014-05-03T21:16:57.000Z", "updated": "2014-05-03T21:16:57.000Z", "title": "On the existence threshold for positive solutions of p-laplacian equations with a concave-convex nonlinearity", "authors": [ "Fernando Charro", "Enea Parini" ], "categories": [ "math.AP" ], "abstract": "We study the following boundary value problem with a concave-convex nonlinearity: \\begin{equation*} \\left\\{ \\begin{array}{r c l l} -\\Delta_p u & = & \\Lambda\\,u^{q-1}+ u^{r-1} & \\textrm{in }\\Omega, \\\\ u & = & 0 & \\textrm{on }\\partial\\Omega. \\end{array}\\right. \\end{equation*} Here $\\Omega \\subset \\mathbb{R}^n$ is a bounded domain and $10$ such that the problem admits at least two positive solutions for $0<\\Lambda<\\Lambda_{q,r}$, at least one positive solution for $\\Lambda=\\Lambda_{q,r}$, and no positive solution for $\\Lambda > \\Lambda_{q,r}$. We show that \\[ \\lim_{q \\to p} \\Lambda_{q,r} = \\lambda_1(p), \\] where $\\lambda_1(p)$ is the first eigenvalue of the p-laplacian. It is worth noticing that $\\lambda_1(p)$ is the threshold for existence/nonexistence of positive solutions to the above problem in the limit case $q=p$.", "revisions": [ { "version": "v1", "updated": "2014-05-03T21:16:57.000Z" } ], "analyses": { "subjects": [ "35J60", "35J70" ], "keywords": [ "positive solution", "concave-convex nonlinearity", "existence threshold", "p-laplacian equations", "boundary value problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.0621C" } } }