{ "id": "1405.0568", "version": "v2", "published": "2014-05-03T11:20:12.000Z", "updated": "2015-07-01T20:50:52.000Z", "title": "On Superstable Expansions of Free Abelian Groups", "authors": [ "Daniel Palacin", "Rizos Sklinos" ], "categories": [ "math.LO" ], "abstract": "We prove that $(\\Z,+,0)$ has no proper superstable expansions of finite Lascar rank. Nevertheless, this structure equipped with a predicate defining powers of a given natural number is superstable of Lascar rank $\\omega$. Additionally, our methods yield other superstable expansions such as $(\\Z,+,0)$ equipped with the set of factorial elements.", "revisions": [ { "version": "v1", "updated": "2014-05-03T11:20:12.000Z", "abstract": "We prove that $(\\mathbb Z,+,0)$ has no proper superstable expansions of finite Lascar rank. Nevertheless, we exhibit a superstable proper expansion.", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-07-01T20:50:52.000Z" } ], "analyses": { "subjects": [ "03C45" ], "keywords": [ "free abelian groups", "finite lascar rank", "proper superstable expansions", "superstable proper expansion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.0568P" } } }