{ "id": "1405.0401", "version": "v2", "published": "2014-05-02T13:43:24.000Z", "updated": "2014-12-02T18:39:50.000Z", "title": "Convexity of the K-energy on the space of Kahler metrics and uniqueness of extremal metrics", "authors": [ "Robert J. Berman", "Bo Berndtsson" ], "comment": "v1: 26 pages, v2: 31 pages (improved exposition and a new title)", "categories": [ "math.DG", "math.CV" ], "abstract": "We establish the convexity of Mabuchi's K-energy functional along weak geodesics in the space of Kahler potentials on a compact Kahler manifold thus confirming a conjecture of Chen and give some applications in Kahler geometry, including a proof of the uniqueness of constant scalar curvature metrics (or more generally extremal metrics) modulo automorphisms. The key ingredient is a new local positivity property of weak solutions to the homogenuous Monge-Ampere equation on a product domain, whose proof uses local Bergman kernels.", "revisions": [ { "version": "v1", "updated": "2014-05-02T13:43:24.000Z", "title": "Convexity of the K-energy on the space of Kähler metrics", "comment": "26 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-12-02T18:39:50.000Z" } ], "analyses": { "keywords": [ "kähler metrics", "constant scalar curvature metrics", "mabuchis k-energy functional", "compact kahler manifold", "local positivity property" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.0401B" } } }