{ "id": "1405.0368", "version": "v2", "published": "2014-05-02T10:05:06.000Z", "updated": "2014-10-01T09:20:55.000Z", "title": "Fredholmness and Index of Simplest Weighted Singular Integral Operators with Two Slowly Oscillating Shifts", "authors": [ "Alexei Yu. Karlovich" ], "comment": "To appear in the Banach Journal of Mathematical Analysis, 19 pages", "categories": [ "math.FA" ], "abstract": "Let $\\alpha$ and $\\beta$ be orientation-preserving diffeomorphisms (shifts) of $\\mathbb{R}_+=(0,\\infty)$ onto itself with the only fixed points 0 and $\\infty$, where the derivatives $\\alpha'$ and $\\beta'$ may have discontinuities of slowly oscillating type at 0 and $\\infty$. For $p\\in(1,\\infty)$, we consider the weighted shift operators $U_\\alpha$ and $U_\\beta$ given on the Lebesgue space $L^p(\\mathbb{R}_+)$ by $U_\\alpha f=(\\alpha')^{1/p}(f\\circ\\alpha)$ and $U_\\beta f= (\\beta')^{1/p}(f\\circ\\beta)$. For $i,j\\in\\mathbb{Z}$ we study the simplest weighted singular integral operators with two shifts $A_{ij}=U_\\alpha^i P_\\gamma^++U_\\beta^j P_\\gamma^-$ on $L^p(\\mathbb{R}_+)$, where $P_\\gamma^\\pm=(I\\pm S_\\gamma)/2$ are operators associated to the weighted Cauchy singular integral operator $$ (S_\\gamma f)(t)=\\frac{1}{\\pi i}\\int_{\\mathbb{R}_+} (\\frac{t}{\\tau})^\\gamma\\frac{f(\\tau)}{\\tau-t}d\\tau $$ with $\\gamma\\in\\mathbb{C}$ satisfying $0<1/p+\\Re\\gamma<1$. We prove that all $A_{ij}$ are Fredholm operators on $L^p(\\mathbb{R}_+)$ and have zero indices. This statement extends an earlier result obtained by the author, Yuri Karlovich, and Amarino Lebre for $\\gamma=0$.", "revisions": [ { "version": "v1", "updated": "2014-05-02T10:05:06.000Z", "abstract": "Let $\\alpha$ and $\\beta$ be orientation-preserving diffeomorphisms (shifts) of $\\mathbb{R}_+=(0,\\infty)$ onto itself with the only fixed points $0$ and $\\infty$, where the derivatives $\\alpha'$ and $\\beta'$ may have discontinuities of slowly oscillating type at $0$ and $\\infty$. For $p\\in(1,\\infty)$, we consider the weighted shift operators $U_\\alpha$ and $U_\\beta$ given on the Lebesgue space $L^p(\\mathbb{R}_+)$ by $U_\\alpha f=(\\alpha')^{1/p}(f\\circ\\alpha)$ and $U_\\beta f= (\\beta')^{1/p}(f\\circ\\beta)$. For $i,j\\in\\mathbb{Z}$ we study the simplest weighted singular integral operators with two shifts $A_{ij}=U_\\alpha^i P_\\gamma^++U_\\beta^j P_\\gamma^-$ on $L^p(\\mathbb{R}_+)$, where $P_\\gamma^\\pm=(I\\pm S_\\gamma)/2$ are operators associated to the weighted Cauchy singular integral operator $$ (S_\\gamma f)(t)=\\frac{1}{\\pi i}\\int_{\\mathbb{R}_+} \\left(\\frac{t}{\\tau}\\right)^\\gamma\\frac{f(\\tau)}{\\tau-t}d\\tau $$ with $\\gamma\\in\\mathbb{C}$ satisfying $0<1/p+\\Re\\gamma<1$. We prove that all $A_{ij}$ are Fredholm operators on $L^p(\\mathbb{R}_+)$ and have zero indices. This statement extends an earlier result obtained by the author, Yuri Karlovich, and Amarino Lebre for $\\gamma=0$.", "comment": "17 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-01T09:20:55.000Z" } ], "analyses": { "subjects": [ "47B35", "45E05", "47A53", "47G10", "47G30" ], "keywords": [ "simplest weighted singular integral operators", "slowly oscillating shifts", "cauchy singular integral operator", "fredholmness" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.0368K" } } }