{ "id": "1405.0297", "version": "v2", "published": "2014-05-01T20:12:52.000Z", "updated": "2014-11-18T14:08:40.000Z", "title": "Minimal thinness with respect to symmetric Lévy processes", "authors": [ "Panki Kim", "Renming Song", "Zoran Vondraček" ], "comment": "34 pages", "categories": [ "math.PR" ], "abstract": "Minimal thinness is a notion that describes the smallness of a set at a boundary point. In this paper, we provide tests for minimal thinness at finite and infinite minimal Martin boundary points for a large class of purely discontinuous symmetric L\\'evy processes.", "revisions": [ { "version": "v1", "updated": "2014-05-01T20:12:52.000Z", "comment": "35 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-11-18T14:08:40.000Z" } ], "analyses": { "subjects": [ "60J50", "31C40", "31C35", "60J45", "60J75" ], "keywords": [ "minimal thinness", "symmetric lévy processes", "discontinuous symmetric levy processes", "infinite minimal martin boundary points" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.0297K" } } }