{ "id": "1405.0295", "version": "v1", "published": "2014-05-01T20:09:06.000Z", "updated": "2014-05-01T20:09:06.000Z", "title": "Martin boundary for some symmetric Lévy processes", "authors": [ "Panki Kim", "Renming Song", "Zoran Vondraček" ], "comment": "36 pages", "categories": [ "math.PR" ], "abstract": "In this paper we study the Martin boundary of open sets with respect to a large class of purely discontinuous symmetric L\\'evy processes in ${\\mathbb R}^d$. We show that, if $D\\subset {\\mathbb R}^d$ is an open set which is $\\kappa$-fat at a boundary point $Q\\in \\partial D$, then there is exactly one Martin boundary point associated with $Q$ and this Martin boundary point is minimal.", "revisions": [ { "version": "v1", "updated": "2014-05-01T20:09:06.000Z" } ], "analyses": { "subjects": [ "60J50", "31C40", "31C35", "60J45", "60J75" ], "keywords": [ "symmetric lévy processes", "open set", "purely discontinuous symmetric levy processes", "martin boundary point" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.0295K" } } }