{ "id": "1405.0237", "version": "v1", "published": "2014-05-01T17:51:07.000Z", "updated": "2014-05-01T17:51:07.000Z", "title": "An RIP-based approach to $ΣΔ$ quantization for compressed sensing", "authors": [ "Joe-Mei Feng", "Felix Krahmer" ], "comment": "11 pages", "categories": [ "cs.IT", "math.IT" ], "abstract": "In this paper, we provide a new approach to estimating the error of reconstruction from $\\Sigma\\Delta$ quantized compressed sensing measurements. Our method is based on the restricted isometry property (RIP) of a certain projection of the measurement matrix. Our result yields simple proofs and a slight generalization of the best-known reconstruction error bounds for Gaussian and subgaussian measurement matrices.", "revisions": [ { "version": "v1", "updated": "2014-05-01T17:51:07.000Z" } ], "analyses": { "keywords": [ "compressed sensing", "rip-based approach", "result yields simple proofs", "quantization", "best-known reconstruction error bounds" ], "tags": [ "journal article" ], "publication": { "doi": "10.1109/LSP.2014.2336700", "journal": "IEEE Signal Processing Letters", "year": 2014, "month": "Nov", "volume": 21, "number": 11, "pages": 1351 }, "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014ISPL...21.1351F" } } }