{ "id": "1405.0113", "version": "v1", "published": "2014-05-01T08:23:05.000Z", "updated": "2014-05-01T08:23:05.000Z", "title": "Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields", "authors": [ "Swee Hong Chan", "Henk D. L. Hollmann", "Dmitrii V. Pasechnik" ], "comment": "I+24 pages", "categories": [ "math.CO" ], "abstract": "A maximal minor $M$ of the Laplacian of an $n$-vertex Eulerian digraph $\\Gamma$ gives rise to a finite group $\\mathbb{Z}^{n-1}/\\mathbb{Z}^{n-1}M$ known as the sandpile (or critical) group $S(\\Gamma)$ of $\\Gamma$. We determine $S(\\Gamma)$ of the generalized de Bruijn graphs $\\Gamma=\\mathrm{DB}(n,d)$ with vertices $0,\\dots,n-1$ and arcs $(i,di+k)$ for $0\\leq i\\leq n-1$ and $0\\leq k\\leq d-1$, and closely related generalized Kautz graphs, extending and completing earlier results for the classical de Bruijn and Kautz graphs. Moreover, for a prime $p$ and an $n$-cycle permutation matrix $X\\in\\mathrm{GL}_n(p)$ we show that $S(\\mathrm{DB}(n,p))$ is isomorphic to the quotient by $\\langle X\\rangle$ of the centralizer of $X$ in $\\mathrm{PGL}_n(p)$. This offers an explanation for the coincidence of numerical data in sequences A027362 and A003473 of the OEIS, and allows one to speculate upon a possibility to construct normal bases in the finite field $\\mathbb{F}_{p^n}$ from spanning trees in $\\mathrm{DB}(n,p)$.", "revisions": [ { "version": "v1", "updated": "2014-05-01T08:23:05.000Z" } ], "analyses": { "subjects": [ "05C20", "05C50", "20K01" ], "keywords": [ "finite field", "circulant matrices", "sandpile groups", "related generalized kautz graphs", "construct normal bases" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.0113C" } } }