{ "id": "1404.7581", "version": "v2", "published": "2014-04-30T03:04:31.000Z", "updated": "2014-10-12T04:03:51.000Z", "title": "Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension", "authors": [ "Mihaela Ifrim", "Daniel Tataru" ], "comment": "15 pages. We fixed the proof of Lemma 2.4", "categories": [ "math.AP" ], "abstract": "This article is concerned with the small data problem for the cubic nonlinear Schr\\\"odinger equation (NLS) in one space dimension, and short range modifications of it. We provide a new, simpler approach in order to prove that global solutions exist for data which is small in $H^{0,1}$. In the same setting we also discuss the related problems of obtaining a modified scattering expansion for the solution, as well as asymptotic completeness.", "revisions": [ { "version": "v1", "updated": "2014-04-30T03:04:31.000Z", "comment": "15 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-12T04:03:51.000Z" } ], "analyses": { "subjects": [ "35Q55" ], "keywords": [ "cubic nonlinear schrödinger equation", "space dimension", "global bounds", "small data problem", "short range modifications" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.7581I" } } }