{ "id": "1404.7454", "version": "v2", "published": "2014-04-27T14:12:39.000Z", "updated": "2015-08-12T19:29:03.000Z", "title": "Marcinkiewicz-Zygmund Strong Law of Large Numbers for Pairwise i.i.d. Random Variables", "authors": [ "Valery Korchevsky" ], "categories": [ "math.PR" ], "abstract": "It is shown that the Marcinkiewicz-Zygmund strong law of large numbers holds for pairwise independent identically distributed random variables. It is proved that if $X_{1}, X_{2}, \\ldots$ are pairwise independent identically distributed random variables such that $E|X_{1}|^p < \\infty$ for some $1 < p < 2$, then $(S_{n}-ES_{n})/n^{1/p} \\to 0$ a.s. where $S_{n} = \\sum_{k=1}^{n} X_{k}$.", "revisions": [ { "version": "v1", "updated": "2014-04-27T14:12:39.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-08-12T19:29:03.000Z" } ], "analyses": { "subjects": [ "60F15" ], "keywords": [ "marcinkiewicz-zygmund strong law", "large numbers", "independent identically distributed random variables", "pairwise independent identically distributed random" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.7454K" } } }