{ "id": "1404.7033", "version": "v2", "published": "2014-04-28T16:07:08.000Z", "updated": "2014-10-20T12:15:10.000Z", "title": "An exotic zoo of diffeomorphism groups on $\\mathbb R^n$", "authors": [ "Andreas Kriegl", "Peter W. Michor", "Armin Rainer" ], "comment": "45 pages; some small corrections done", "categories": [ "math.DG", "math.AP", "math.FA" ], "abstract": "Let $C^{[M]}$ be a (local) Denjoy-Carleman class of Beurling or Roumieu type, where the weight sequence $M=(M_k)$ is log-convex and has moderate growth. We prove that the groups ${\\operatorname{Diff}}\\mathcal{B}^{[M]}(\\mathbb{R}^n)$, ${\\operatorname{Diff}}W^{[M],p}(\\mathbb{R}^n)$, ${\\operatorname{Diff}}{\\mathcal{S}}{}_{[L]}^{[M]}(\\mathbb{R}^n)$, and ${\\operatorname{Diff}}\\mathcal{D}^{[M]}(\\mathbb{R}^n)$ of $C^{[M]}$-diffeomorphisms on $\\mathbb{R}^n$ which differ from the identity by a mapping in $\\mathcal{B}^{[M]}$ (global Denjoy--Carleman), $W^{[M],p}$ (Sobolev-Denjoy-Carleman), ${\\mathcal{S}}{}_{[L]}^{[M]}$ (Gelfand--Shilov), or $\\mathcal{D}^{[M]}$ (Denjoy-Carleman with compact support) are $C^{[M]}$-regular Lie groups. As an application we use the $R$-transform to show that the Hunter-Saxton PDE on the real line is well-posed in any of the classes $W^{[M],1}$, ${\\mathcal{S}}{}_{[L]}^{[M]}$, and $\\mathcal{D}^{[M]}$. Here we find some surprising groups with continuous left translations and $C^{[M]}$ right translations (called half-Lie groups), which, however, also admit $R$-transforms.", "revisions": [ { "version": "v1", "updated": "2014-04-28T16:07:08.000Z", "comment": "45 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-20T12:15:10.000Z" } ], "analyses": { "subjects": [ "26E10", "46A17", "46E50", "46F05", "58B10", "58B25", "58C25", "58D05", "58D15", "35Q31" ], "keywords": [ "diffeomorphism groups", "exotic zoo", "regular lie groups", "denjoy-carleman class", "right translations" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.7033K" } } }