{ "id": "1404.6886", "version": "v2", "published": "2014-04-28T07:40:15.000Z", "updated": "2015-01-08T12:43:04.000Z", "title": "Subalgebras of the Z/2-equivariant Steenrod algebra", "authors": [ "Nicolas Ricka" ], "comment": "24 pages, fixed some typos, some proofs improved", "categories": [ "math.AT" ], "abstract": "The aim of this paper is to study sub-algebras of the $\\mathbb{Z}/2$-equivariant Steenrod algebra (for cohomology with coefficients in the constant Mackey functor $\\mathbb{F}_2$) which come from quotient Hopf algebroids of the $\\mathbb{Z}/2$-equivariant dual Steenrod algebra. In particular, we study the equivariant counterpart of profile functions, exhibit the equivariant analogues of the classical $\\mathcal{A}(n)$ and $\\mathcal{E}(n)$ and show that the Steenrod algebra is free as a module over these.", "revisions": [ { "version": "v1", "updated": "2014-04-28T07:40:15.000Z", "comment": "24 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-01-08T12:43:04.000Z" } ], "analyses": { "subjects": [ "55S10", "55S91" ], "keywords": [ "equivariant dual steenrod algebra", "subalgebras", "constant mackey functor", "quotient hopf algebroids", "equivariant steenrod algebra" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.6886R" } } }