{ "id": "1404.6879", "version": "v1", "published": "2014-04-28T06:55:40.000Z", "updated": "2014-04-28T06:55:40.000Z", "title": "Quantization of the shift of argument subalgebras in type A", "authors": [ "Vyacheslav Futorny", "Alexander Molev" ], "comment": "18 pages", "categories": [ "math.RT" ], "abstract": "Given a simple Lie algebra $\\mathfrak{g}$ and an element $\\mu\\in\\mathfrak{g}^*$, the corresponding shift of argument subalgebra of $\\text{S}(\\mathfrak{g})$ is Poisson commutative. In the case where $\\mu$ is regular, this subalgebra is known to admit a quantization, that is, it can be lifted to a commutative subalgebra of $\\text{U}(\\mathfrak{g})$. We show that if $\\mathfrak{g}$ is of type $A$, then this property extends to arbitrary $\\mu$, thus proving a conjecture of Feigin, Frenkel and Toledano Laredo. The proof relies on an explicit construction of generators of the center of the affine vertex algebra at the critical level.", "revisions": [ { "version": "v1", "updated": "2014-04-28T06:55:40.000Z" } ], "analyses": { "keywords": [ "argument subalgebra", "quantization", "simple lie algebra", "affine vertex algebra", "toledano laredo" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.6879F" } } }