{ "id": "1404.6509", "version": "v2", "published": "2014-04-25T19:30:11.000Z", "updated": "2014-11-02T15:16:01.000Z", "title": "Flip invariance for domino tilings of three-dimensional regions with two floors", "authors": [ "Pedro H. Milet", "Nicolau C. Saldanha" ], "comment": "33 pages, 34 figures, 2 tables. We updated the reference list", "categories": [ "math.CO" ], "abstract": "We investigate tilings of cubiculated regions with two simply connected floors by 2 x 1 x 1 bricks. More precisely, we study the flip connected component for such tilings, and provide an algebraic invariant that \"almost\" characterizes the flip connected components of such regions, in a sense that we discuss in the paper. We also introduce a new local move, the trit, which, together with the flip, connects the space of domino tilings when the two floors are identical.", "revisions": [ { "version": "v1", "updated": "2014-04-25T19:30:11.000Z", "comment": "33 pages, 34 figures, 2 tables", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-11-02T15:16:01.000Z" } ], "analyses": { "subjects": [ "05B45", "52C20", "52C22", "05C70" ], "keywords": [ "domino tilings", "three-dimensional regions", "flip invariance", "flip connected component", "local move" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.6509M" } } }