{ "id": "1404.6261", "version": "v1", "published": "2014-04-24T20:06:58.000Z", "updated": "2014-04-24T20:06:58.000Z", "title": "On sets of integers with restrictions on their products", "authors": [ "Michael Tait", "Jacques Verstraete" ], "categories": [ "math.CO" ], "abstract": "A {\\em product-injective labeling} of a graph $G$ is an injection $\\chi: V(G) \\to \\mathbb{Z}$ such that $\\chi(u)\\chi(v) \\not= \\chi(x)\\chi(y)$ for any distinct edges $uv, xy\\in E(G)$. Let $P(G)$ be the smallest $N \\geq 1$ such that there exists a product-injective labeling $\\chi : V(G) \\rightarrow [N]$. Let $P(n,d)$ be the maximum possible value of $P(G)$ over $n$-vertex graphs $G$ of maximum degree at most $d$. In this paper, we determine the asymptotic value of $P(n,d)$ for all but a small range of values of $d$ relative to $n$. Specifically, we show that there exist constants $a,b > 0$ such that $P(n,d) \\sim n$ if $d \\leq \\sqrt{n}(\\log n)^{-a}$ and $P(n,d) \\sim n\\log n$ if $d \\geq \\sqrt{n}(\\log n)^{b}$.", "revisions": [ { "version": "v1", "updated": "2014-04-24T20:06:58.000Z" } ], "analyses": { "keywords": [ "restrictions", "maximum degree", "small range", "distinct edges", "asymptotic value" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.6261T" } } }