{ "id": "1404.5903", "version": "v1", "published": "2014-04-23T17:25:02.000Z", "updated": "2014-04-23T17:25:02.000Z", "title": "Most Correlated Arms Identification", "authors": [ "Che-Yu Liu", "Sébastien Bubeck" ], "categories": [ "stat.ML", "cs.LG" ], "abstract": "We study the problem of finding the most mutually correlated arms among many arms. We show that adaptive arms sampling strategies can have significant advantages over the non-adaptive uniform sampling strategy. Our proposed algorithms rely on a novel correlation estimator. The use of this accurate estimator allows us to get improved results for a wide range of problem instances.", "revisions": [ { "version": "v1", "updated": "2014-04-23T17:25:02.000Z" } ], "analyses": { "keywords": [ "correlated arms identification", "novel correlation estimator", "wide range", "accurate estimator", "adaptive arms sampling strategies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.5903L" } } }