{ "id": "1404.5751", "version": "v1", "published": "2014-04-23T09:04:29.000Z", "updated": "2014-04-23T09:04:29.000Z", "title": "Existence and non-existence of Blow-up solutions for a non-autonomous problem with indefinite and gradient terms", "authors": [ "Claudianor O. Alves", "Carlos A. Santos", "Jiazheng Zhou" ], "categories": [ "math.AP" ], "abstract": "We deal with existence and non-existence of non-negative entire solutions that blow-up at infinity for a quasilinear problem depending on a non-negative real parameter. Our main objectives in this paper are to provide far more general conditions for existence and non-existence of solutions. To this end, we explore an associated $\\mu$-parameter convective ground state problem, sub and super solutions method combined and an approximation arguments to show existence of solutions. To show the result of non-existence of solutions, we follow an idea due to Mitidieri-Pohozaev.", "revisions": [ { "version": "v1", "updated": "2014-04-23T09:04:29.000Z" } ], "analyses": { "keywords": [ "blow-up solutions", "gradient terms", "non-existence", "non-autonomous problem", "parameter convective ground state problem" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00033-014-0451-4", "journal": "Zeitschrift Angewandte Mathematik und Physik", "year": 2015, "month": "Jun", "pages": 891, "volume": 66, "number": 3 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015ZaMP...66..891A" } } }